Assignment 1

Features of Oracle 9i Release 2(9.2)

1 Very Large Memory support(VLM) on win2k,winXP.this allows oracle9.2 to access>4GB of RAM traditionally available to windows applications.

2 4GB RAM Tuning(4GT)-This allows memory-intensive applications running on Oracle 9i to access upto 3GB of memory as opposed to standard 2GB.

3 VLM instance tuning-This improves database performance by caching more database buffers in memory. This reduces disk I/O.

4 User migration utility-Simplifies conversion of local and external database users to enterprise users.

5 Oracle shares server process-It is a server configuration which allows many users process to share very few server process.It limits the no. of threads needed. It supports>10k simultaneous connections to a single db instance.

6 Oracle Net Multiplexing & connections pooling-This allows a large configuration to connect more users to a single db instance.

7 Oracle Real Application clusters-This varies connections counts by allowing multiple server computers to access the same db files.

DDL stands for data definition language. The create table command is used to define a table structure. It defines each column of the table. Each column has three attributes-name, datatype and size. Each name can have maximum of 30 characters. It should begin with an alphabate. The syntax for create table is as follows:

Create table tablename(

Column1 datatype(size),

Column2 datatype(size),

……………………….

);

Constraints can also be defined on the tables, which are of following types:

Primary key constraint,

Foreign key constraint,

Unique constraint,

Check constraint

And default constraint.

Assignments on Data Definition Language
EX1: First Financial Inc has the following three categories of customers:

 Normal Customers classified as N

 Staff ,,

,, ,, S

 VIP ,,
 ,, ,, V

It stores the info of all its customers in a table CUSTMAS. Create a table CUSTMAS as per the structure given in the following table. CUST_NO is the primary key & S_SEC_NO is the unique key.

	Col_Name
	Desc
	Data Type
	Size
	Constraint

	CUST_NO
	Customer No.
	Numeric
	6
	NOT NULL

	CUST_NAME
	Customer Name
	Varchar2
	35
	NOT NULL

	ADD_1
	Customer Address
	Varchar2
	35
	NOT NULL

	ADD_2
	Customer Address
	Varchar2
	35
	NOT NULL

	CITY
	City
	Varchar2
	20
	NOT NULL

	STATE
	State
	 Varchar2
	20
	NOT NULL

	ZIP
	Zip Code
	 Varchar2
	08
	NOT NULL

	S_SEC_NO
	Social Security No.
	 Varchar2
	11
	NOT NULL

	PHONE
	Phone No.
	 Varchar2
	13
	NOT NULL

	CATEG
	Customer Categories
	 Varchar2
	01
	NOT NULL IN (N,S,V)

Solution:

create table CUSTMAS (

cust_no number(6) constraint custmas_primary Primary Key,

cust_name varchar2(35) not null,

add_1 varchar2(35) not null,

add_2 varchar2(35),

city varchar2(20) not null,

state varchar2(20) not null,

zip varchar2(8) not null,

s_sec_no varchar2(11) constraint custmas_ssecnounq unique,

phone varchar2(13),

categ varchar2(1) constraint custmas_categcheck check(categ in('N','S','V'))

);

EX2: The ACMAS table stores the details of all accounts for the First Financial Inc. The table stores the following values in the containing a/c type:

 C for checking a/c

 S for saving a/c

To identify an open a/c from a closed a/c, the table stores the following values in the a/c status col:

 O for open a/c

 C for closed a/c

Create the table ACMAS as per the structure given in table below.AC_NO is the primary key.

	Col_Name
	Desc
	Data Type
	Size
	Constraint

	AC_NO
	A/C No.
	Number
	10
	NOT NULL

	AC_TYPE
	A/C Type
	Varchar2
	01
	NOT NULL IN(C,S)

	AC_STATUS
	A/C Status
	Varchar2
	01
	NOT NULL IN(O,S)

	AC_BALANCE
	Balance Amt
	Number
	13,2
	NOT NULL 0.00

	AC_OPEN_DT
	A/C Opening Dt
	Date
	
	Current Date is default

	AC_CLOS_DT
	A/C Closing Dt
	Date
	
	Later than or the same as AC_OPEN_DT

Solution:

create table ACMAS (

ac_no number(10) constraint acmas_primary Primary Key,

ac_type varchar2(1) constraint acmas_acttypecheck check (ac_type in('C','S')),

ac_status varchar2(1) constraint acmas_acstatuscheck check(ac_status in('O','S')),

ac_balance number(13,2) default 0.00 not null,

ac_open_dt date default SYSDATE not null,

ac_clos_dt date,

constraint acmas_acclosdtcheck check(ac_clos_dt>=ac_open_dt)

);

EX3: The XREF table stores the a/c number corresponding to each customer. The table is used for x_ref. in the following site:

· to obtain customer no. for a given a/c no.

· to obtain a/c no. for a given customer no.

This table has a composite primary key (CUST_NO, AC_NO). When adding a row in this table, the CUST_NO & AC_NO should be existing in CUSTMAS & ACMAS. Create XREF table as per following structure.

	Col_Name
	Desc
	Data Type
	Size
	Constraint

	CUST_NO
	Customer No.
	Numeric
	06
	NOT NULL

	AC_TYPE
	A/C Type
	Varchar2
	01
	NOT NULL

Solution:

create table XREF (

cust_no number(6) constraint xref_custnoforen references custmas(cust_no) ,

ac_no number(10) constraint xref_acnoforen references acmas(ac_no),

constraint xref_primary Primary Key(cust_no,ac_no)

);

Ex: Create a table Emp_dup taking all the records from emp.

Solution:

Create table Emp_dup as select * from emp;

Assignment 2

Once a table is created, the table is to be loaded with data. Insert into command is used to insert data into table.The syntax is as follows.

Insert into tablename(column1,column2,……..)

Values(data1,data2,…………..);

To view the data from the table, select statement is to be used. The syntax for doing so is:

Select *

From tablename;

Filtering of data is also possible by adding a where clause with the select statement. The syntax is:

Select column1, column2,…….

From tablename

Where condition;

Projection operation can also be done by specifying the required column names:

Select column1, column2,…….

From tablename;

Modifying the structure of tables

1.Adding new columns:

`

Syntax:

ALTER TABLE tablename

 ADD(newcolumnname1 datatype(size), newcolumnname2 datatype(size),…)

2.Modifying Existing Columns:

Syntax:

ALTER TABLE tablename

 MODIFY(columnname newdatatype(newsize));

3.Add a PRIMARY KEY data constraint on the column
Ex: Add a field country to the CUSTMAS table which is of character type and size 20.

Sol: ALTER TABLE CUSTMAS ADD(country varchar2(20));

Table altered.

SQL> desc CUSTMAS

 Name Null? Type

 ------------------- ---------------------- -----------------------

 CUST_NO NOT NULL NUMBER(6)

 CUST_NAME NOT NULL VARCHAR2(35)

 ADD_1 NOT NULL VARCHAR2(35)

 ADD_2 VARCHAR2(35)

 CITY NOT NULL VARCHAR2(20)

 STATE NOT NULL VARCHAR2(20)

 ZIP NOT NULL VARCHAR2(8)

 S_SEC_NO NOT NULL VARCHAR2(11)

 PHONE NOT NULL VARCHAR2(13)

 CATEG NOT NULL VARCHAR2(1)

 COUNTRY VARCHAR2(20) :

EX2:

Restriction on the ALTER TABLE:

Using the ALTER TABLE clause the following tasks cannot be performed:

1 Change the name of the table.

2 Change the name of the column.

3 Drop a column.

4 Decrease the size of a column if the table data exists.

Dropping table

Sometimes it is needed to discard some tables from a particular database. To destroy existing tables, DROP TABLE statement is used.

Syntax:

 DROP TABLE<Table Name>;

Truncating table

Truncate Table command can be used to make empty tables completely. Logically this command can be used as an equivalent of DELETE statement, which is used to delete all rows, but there is some significant difference of this statement to DELETE statement as follows:

· Truncate operations drop and re-create the table, which is much faster than deleting rows one by one.

· Truncate operations are not truncation-safe(i.e. an error will occur if an active transaction of an active lock exists).

· The numbers of deleted rows are not returned.

Syntax:

 TRUNCATE TABLE<Table Name>;
Assignment 3

Assignments on (Introduction to SQL)

1. Observe the structure of following tables:

 Emp, Dept, Salgrade, bonus.Try to understand the relationship between these tables.

Sol: desc EMP;

Output:

	Name
	Null?
	Type

	EMPNO
	NOT NULL
	NUMBER(4)

	ENAME
	
	VARCHAR2(10)

	JOB
	
	VARCHAR2(9)

	MGR
	
	NUMBER(4)

	HIREDATE
	
	DATE

	SAL
	
	NUMBER(7,2)

	COMM
	
	NUMBER(7,2)

	DEPTNO
	
	NUMBER(2)

Sol: desc DEPT;

Output:
	Name
	Null?
	Type

	DEPTNO
	NOT NULL
	NUMBER(2)

	DNAME
	
	VARCHAR2(14)

	LOC
	
	VARCHAR2(13)

Sol: desc SALGRADE;

Output:

	Name
	Null?
	Type

	GRADE
	
	NUMBER

	LOSAL
	
	NUMBER

	HISAL
	
	NUMBER

Sol: desc BONUS;

Output:

	Name
	Null?
	Type

	ENAME
	
	VARCHAR2(10)

	JOB
	
	VARCHAR2(9)

	SAL
	
	NUMBER

	COMM
	
	NUMBER

2. List the names of employees in the order of their date of joining.

Sol: select ename, hiredate from emp order by hiredate;

Output:

ENAME HIREDATE

----------------- -------------------

SMITH 17-DEC-80

ALLEN 20-FEB-81

WARD 22-FEB-81

JONES 02-APR-81

BLAKE 01-MAY-81

CLARK 09-JUN-81

TURNER 08-SEP-81

MARTIN 28-SEP-81

KING 17-NOV-81

JAMES 03-DEC-81

FORD 03-DEC-81

MILLER 23-JAN-82

SCOTT 19-APR-87

ADAMS 23-MAY-87

14 rows selected.

3. Display all the job types.

Sol: select distinct job from emp;

Output:
JOB

ANALYST

CLERK

MANAGER

PRESIDENT

SALESMAN

4. List details of employees of dept no. 20 & 30 in alphabetical order of names.

Sol: select ename, deptno, sal from emp where deptno in (20, 30) order by ename;

Output:

ENAME DEPTNO SAL

---------- ---------- ----------

ADAMS 20 1100

ALLEN 30 1600

BLAKE 30 2850

FORD 20 3000

JAMES 30 950

JONES 20 2975

MARTIN 30 1250

SCOTT 20 3000

SMITH 20 800

TURNER 30 1500

WARD 30 1250

11 rows selected.

5. List all employee names which have LA or LL in them.

Sol: select ename from emp where ename like '%LA%' or ename like '%LL%';

Output:

ENAME

ALLEN

BLAKE

CLARK

MILLER

6. List name & total remuneration for all employees.

Sol: select ename employee, (sal*12) +NVL(comm,0) remuneration from emp

 order by ename;
Output:
EMPLOYEE REMUNERATION

---------- --------------------

ADAMS 13200

ALLEN 19500

BLAKE 34200

CLARK 29400

FORD 36000

JAMES 11400

JONES 35700

KING 60000

MARTIN 16400

MILLER 15600

SCOTT 36000

EMPLOYEE REMUNERATION

---------- ------------------

SMITH 9600

TURNER 18000

WARD 15500

14 rows selected.

7. Display names of employee who joined in 1982.

Sol: select ename, hiredate from emp where hiredate like '%82';
Output:
ENAME HIREDATE

------------- --------------------

MILLER 23-JAN-82

 8. Display names of employee whose salary lies between 1500 and 3000.

Sol: select ename,sal from emp where sal between 1500 and 3000;
Output:
ENAME SAL

---------- ----------

ALLEN 1600

JONES 2975

BLAKE 2850

CLARK 2450

SCOTT 3000

TURNER 1500

FORD 3000

7 rows selected.

9. Display names of employee who serves their jobs as ‘clerk’, ’manager’ or ‘salesman’.

Sol: select ename,job,sal from emp where job in('CLERK','MANAGER','SALESMAN');
Output:
 ENAME JOB SAL

---------- --------- ----------

SMITH CLERK 800

ALLEN SALESMAN 1600

WARD SALESMAN 1250

JONES MANAGER 2975

MARTIN SALESMAN 1250

BLAKE MANAGER 2850

CLARK MANAGER 2450

TURNER SALESMAN 1500

ADAMS CLERK 1100

JAMES CLERK 950

MILLER CLERK 1300

11 rows selected.

10. Delete records of employees from Emp_dup where salary of employees is less than 1000

Sol: Delete from Emp_dup where sal<1000;

11. Increase the salary of all employees by 10% in Emp_dup table.

Sol: Update Emp_dup set sal=1.1*sal;

Assignment 4

Functions that act on only one value at a time are called scalar functions or single row functions. Single row functions returns one result for every queried table or view. These functions can be classified corresponding to the datatype of their arguments:

· String functions:for string datatype,

· Numeric functions:for number datatype,

· Date functions:for date datatype,

· Conversion functions:for conversion of one datatype to another.

Assignments on (Single Row Functions)

1. Display employee names & their hire dates as shown below:

 ename Date of joining

 ___________ ____________________

 Smith Seventeenth, December, 1980

 ------- --------------

 ------- --------------

Sol: select ename, to_char(hiredate,'DDSPTH, MONTH, YYYY') "Date of Joining" from emp;
Output:

ENAME Date of Joining

---------- -------------------------------

SMITH SEVENTEENTH, DECEMBER , 1980

ALLEN TWENTIETH, FEBRUARY , 1981

WARD TWENTY-SECOND, FEBRUARY , 1981

JONES SECOND, APRIL , 1981

MARTIN TWENTY-EIGHTH, SEPTEMBER, 1981

BLAKE FIRST, MAY , 1981

CLARK NINTH, JUNE , 1981

SCOTT NINETEENTH, APRIL , 1987

KING SEVENTEENTH, NOVEMBER , 1981

TURNER EIGHTH, SEPTEMBER, 1981

ADAMS TWENTY-THIRD, MAY , 1987

ENAME Date of Joining

---------- ------------------------------

JAMES THIRD, DECEMBER , 1981

FORD THIRD, DECEMBER , 1981

MILLER TWENTY-THIRD, JANUARY , 1982

14 rows selected.

2. Display employee name, hiredate & performance review date in this year (performance review date is the same date as hiredate in the current year).

Sol: select ename, hiredate, to_date(substr(to_char(hiredate),1,7) ||(to_char(SYSDATE,'YY')))
"Review on" from emp;

Output:

ENAME HIREDATE Review on

---------- ------------- ----------------

SMITH 17-DEC-80 17-DEC-06

ALLEN 20-FEB-81 20-FEB-06

WARD 22-FEB-81 22-FEB-06

JONES 02-APR-81 02-APR-06

MARTIN 28-SEP-81 28-SEP-06

BLAKE 01-MAY-81 01-MAY-06

CLARK 09-JUN-81 09-JUN-06

SCOTT 19-APR-87 19-APR-06

KING 17-NOV-81 17-NOV-06

TURNER 08-SEP-81 08-SEP-06

ADAMS 23-MAY-87 23-MAY-06

ENAME HIREDATE Review on

---------- ------------ -------------

JAMES 03-DEC-81 03-DEC-06

FORD 03-DEC-81 03-DEC-06

MILLER 23-JAN-82 23-JAN-06

14 rows selected.

3. Write a query to find out the day (e.g. , Sunday etc) of the current date.

Sol: select to_char(SYSDATE,'DAY') "Day is" from dual;
Output:

Day is

SATURDAY

4. Display employee names with first character capital.

Sol: select initcap(ename) from emp;
Output:

INITCAP(EN

Smith

Allen

Ward

Jones

Martin

Blake

Clark

Scott

King

Turner

Adams

INITCAP(EN

James

Ford

Miller

14 rows selected.

5. Display ename & no. of months between their DOJ & current date.

Sol: select ename, months_between(SYSDATE,HIREDATE) from emp;

Output:

ENAME MONTHS_BETWEEN(SYSDATE,HIREDATE)

---------- --

SMITH 303.275909

ALLEN 301.179135

WARD 301.114619

JONES 299.75978

MARTIN 293.921071

BLAKE 298.792039

CLARK 297.533974

SCOTT 227.211393

KING 292.275909

TURNER 294.566232

ADAMS 226.082361

ENAME MONTHS_BETWEEN(SYSDATE,HIREDATE)

---------- --------------------------------

JAMES 291.727522

FORD 291.727522

MILLER 290.082361

14 rows selected.

Assignment 5

Functions that act on a set of values are called group functions. A group function returns a single result row for a group of queried rows. Examples of group functions are

· Avg-for calculating the average

· Min- for calculating the minimum value

· Max- for calculating the maximum value

· Sum-to calculate the sum of a set of values

· Count-to count the no. of rows, including duplicates and null values.

Assignments on (Group Functions)

1. Calculate avg salary of all employees. Now round off the result.

Sol: select round(avg(sal),2) from emp;
Output:

ROUND(AVG(SAL),2)

 2073.21

2. Display max salary in the dept no. 30.

Sol: select max(sal) from emp where deptno=30;

Output:

MAX(SAL)

2850

3. Display the min salary in each dept.

Sol: select deptno,min(sal) from emp group by deptno;
Output:

 DEPTNO MIN(SAL)

---------- ----------

 10 1300

 20 800

 30 950

4. Calculate the job-wise avg salary for the employees who joined before 1-Jan-83.

Sol: select deptno, avg(sal) from emp where hiredate<to_date('1-Jan-83') group by deptno;

Output:

 DEPTNO AVG(SAL)

 ---------- ----------

 10 2916.66667

 20 2258.33333

 30 1566.66667

5. Find out job-wise avg salary within each dept.

Sol: select deptno, job, avg(sal) from emp group by deptno,job;
Output:

 DEPTNO JOB AVG(SAL)

 ---------- --------- ----------

 10 CLERK 1300

 10 MANAGER 2450

 10 PRESIDENT 5000

 20 CLERK 950

 20 ANALYST 3000

 20 MANAGER 2975

 30 CLERK 950

 30 MANAGER 2850

 30 SALESMAN 1400

9 rows selected.

6. Find the dept-wise avg salary for all the depts. employing more than three employees.

Sol: select deptno "Department number", round(avg(sal),2) "Avg Salary" from emp

 group by deptno having count(*)>3;

Output:

 Department number Avg Salary

 ----------------- ----------

 20 2175

 30 1566.67

Assignment 6

Join operation is to be performed for querying multiple tables. Data are retrieved from multiple tables based on the join condition specified. If the join condition is based on the equality of two values in the respective columns of the two tables, then this kind of join operation is called equijoin. Otherwise, the join operation is called non-equijoin. E.g. when the join condition includes operators like between…and, <>, >, < etc, it results in non-equijoin.

Normally, in join operation only the matching values from the two columns of the two tables are retrieved. If the tuples where the values are not matching are also to be retrieved, the outer-join is applied. E.g. there are five numbers of departments in Department table. But, in the Employee table all the employee records are from the first four departments only. Now a join operation on these two tables would retrieve only those rows where the department numbers are matching, i.e. either of those departments where some employee has been recruited. The department with no employee will not be shown. But, applying the outer join can also show it.

Another type of join operation is called self-join. This is when the same table is considered twice to apply the join operation. When the value of one row is to be matched with other rows of the same table, then self-join is applied. In this case, two aliases are created corresponding to the table concerned. Then the join condition is specified based on these aliases.

Assignment on (Querying multiple tables)

1. Display the names of the employees with their with their respective department names.

Sol: select ename,dname from emp,dept where emp.deptno=dept.deptno;

Output:

ENAME DNAME

---------- --------------

SMITH RESEARCH

ALLEN SALES

WARD SALES

JONES RESEARCH

MARTIN SALES

BLAKE SALES

CLARK ACCOUNTING

SCOTT RESEARCH

KING ACCOUNTING

TURNER SALES

ADAMS RESEARCH

ENAME DNAME

---------- --------------

JAMES SALES

FORD RESEARCH

MILLER ACCOUNTING

14 rows selected.

2. Display the grades of all employees along with their respective name, manager code & salary.

Sol: select e.ename,e.mgr,e.sal,s.grade from emp e, salgrade s where e.sal between s.losal and s.hisal;

Output:

ENAME MGR SAL GRADE

---------- ---------- ---------- ----------

SMITH 7902 800 1

ADAMS 7788 1100 1

JAMES 7698 950 1

WARD 7698 1250 2

MARTIN 7698 1250 2

MILLER 7782 1300 2

ALLEN 7698 1600 3

TURNER 7698 1500 3

JONES 7839 2975 4

BLAKE 7839 2850 4

CLARK 7839 2450 4

ENAME MGR SAL GRADE

---------- ---------- ---------- ----------

SCOTT 7566 3000 4

FORD 7566 3000 4

KING 5000 5

14 rows selected.

3. Display employee names & their respective department names and also the department names for which no person is employed.

Sol: select ename,dname from emp e, dept d where e.deptno(+)=d.deptno;
Output:

ENAME DNAME

---------- --------------

CLARK ACCOUNTING

KING ACCOUNTING

MILLER ACCOUNTING

SMITH RESEARCH

ADAMS RESEARCH

FORD RESEARCH

SCOTT RESEARCH

JONES RESEARCH

ALLEN SALES

BLAKE SALES

MARTIN SALES

ENAME DNAME

---------- --------------

JAMES SALES

TURNER SALES

WARD SALES

 OPERATIONS

 DEVELOPMENT

 RESSSS

 RSSS

18 rows selected.

4. Display the names of all employees & their managers.

Sol: select e.ename "employee", m.ename "manager" from emp e, emp m where e.mgr=m.empno;
Output:

employee manager

---------- ----------

SMITH FORD

ALLEN BLAKE

WARD BLAKE

JONES KING

MARTIN BLAKE

BLAKE KING

CLARK KING

SCOTT JONES

TURNER BLAKE

ADAMS SCOTT

JAMES BLAKE

employee manager

---------- ----------

FORD JONES

MILLER CLARK

13 rows selected.

5. Display all employee names and the locations of their department except ‘CHICAGO’

Sol: select e.ename "employee",d.loc "location" from emp e, dept d where e.deptno=d.deptno and d.loc!='chicago';

Output:

employee location

---------- -------------

SMITH DALLAS

ALLEN CHICAGO

WARD CHICAGO

JONES DALLAS

MARTIN CHICAGO

BLAKE CHICAGO

CLARK NEW YORK

SCOTT DALLAS

KING NEW YORK

TURNER CHICAGO

ADAMS DALLAS

employee location

---------- -------------

JAMES CHICAGO

FORD DALLAS

MILLER NEW YORK

14 rows selected.

6. Display department that has no employee.

Sol: select d.deptno "dept no. and name having", d.dname "no employees" from emp e, dept d where e.deptno(+)=d.deptno and e.empno is null;

Output:

dept no. and name having no employees

----------------------------- --------------

 40 OPERATIONS

 50 DEVELOPMENT

 60 RESSSS

 70 RSSS

7. For every employee, display the name, his/her designation, department name, mgr name & mgr’s designation.

Sol: select e.ename "employee", e.job "employee designation", d.dname "department", m.ename "manager", m.job "manager designation" from emp e,emp m,dept d where e.mgr=m.empno and e.deptno=d.deptno;

Output:

 employee employee department manager manager d

---------- --------- -------------- ---------- ---------

SMITH CLERK RESEARCH FORD ANALYST

ALLEN SALESMAN SALES BLAKE MANAGER

WARD SALESMAN SALES BLAKE MANAGER

JONES MANAGER RESEARCH KING PRESIDENT

MARTIN SALESMAN SALES BLAKE MANAGER

BLAKE MANAGER SALES KING PRESIDENT

CLARK MANAGER ACCOUNTING KING PRESIDENT

SCOTT ANALYST RESEARCH JONES MANAGER

TURNER SALESMAN SALES BLAKE MANAGER

ADAMS CLERK RESEARCH SCOTT ANALYST

JAMES CLERK SALES BLAKE MANAGER

employee employee department manager manager d

---------- --------- -------------- ---------- ------------

FORD ANALYST RESEARCH JONES MANAGER

MILLER CLERK ACCOUNTING CLARK MANAGER

13 rows selected.

Assignment 7

Views: All users of a database normally don’t need to access all the data in the database. A view is a query that retrieves limited data derived from one or more tables in a database. The table from which a view derives its data are knows as base tables. A base table, in turn, might be a table or it might be another view.

Unlike a table, a view does not physically exist in a database and hence does not occupy storage. Only the definition of the view is stored. Every time a user access a view, the data from a specified columns in tables are being accessed that form the view.

e.g., A mgr often needs to see only the details of all employee in the department. Instead of presenting all the data from the employee master table to the mgr, one can create a view that contains only the required cols and the required rows.

Advantage:

1 Restrict access to a table(s).

2 Allow users to make simple queries to retrieve the result from complicated queries.

3 Use one view to transparently retrieve data from several tables.

4 Show the same data to different users in different ways.

 There are two types views:

1 Simple views-views from a single base table

2 Complex views- views from a multiple base tables

 Syntax:

 Create view viewname

 as

 select field1, field2,…….

 from tablename

 where condition;

Assignment on views

1. Create a view MGRVIEW containing details of employees where the mgr no=7698

 Then try: select * from mgrview;

Sol: create view mgrview as select empno,ename,job,hiredate,sal,comm,deptno from emp where mgr=7698;

Output:

 EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO

---------- ---------- --------- --------------- ---------- ---------- ----------

 7499 ALLEN SALESMAN 20-FEB-81 1600 300 30

 7521 WARD SALESMAN 22-FEB-81 1250 500 30

 7654 MARTIN SALESMAN 28-SEP-81 1250 1400 30

 7844 TURNER SALESMAN 08-SEP-81 1500 0 30

 7900 JAMES CLERK 03-DEC-81 950 30

2. Create [or Replace] [force] view <view name>

ForceCreate a view even when the base table does not exist. The view can be used once the table is made available.

Sol:

Output:
3. Create or replace view mgrview as

 Select *

 from emp

 where mgr=7698

 with check option;

Sol:

Output:
4. Create a view that will display the following a/c details of a customer holding customer no 100001: AC_Type, AC_Status, AC_Balance and AC_Open_dt.

 Then try: select * from account_vu

 Sol: create or replace view account_vu

 as

 select ac_type,ac_status,ac_balance,ac_open_dt

 from acmas

 where acno in(select ac_no from xref

 where cust_no=100001);

Assignment 8

A subquery is form of SQL statements that appears inside another SQL statements. It is also termed as nested query. The statements containing a sub query are called a parent statement. The parent statement uses the rows returned by the sub query. Limit to the label of nesting is up to 255 sub quires. Subqueries can be of four types:

· Single-row subquery-it returns a single value of a single row.

· Multiple value subquery-it returns multiple values from multiple rows.

· Multiple column subquery- it returns more than one column value from single or multiples rows.

· Co related subquery-in co related subquery inner subquery executes ones for each row considered by the outer query. Inner query is driven by outer query.

Assignment on (Sub queries)

1. Display employee names who are earning < avg sal.

Sol: select ename from emp where sal<(select avg(sal) from emp);
Output:
ENAME

SMITH

ALLEN

WARD

MARTIN

TURNER

ADAMS

JAMES

MILLER

8 rows selected.

2. Display employee names who earn max sal in each job.

Sol: select ename,sal,job from emp where (sal,job) in (select max(sal),job from emp
 group by job);
Output:

ENAME SAL JOB

---------- ---------- ---------

MILLER 1300 CLERK

ALLEN 1600 SALESMAN

JONES 2975 MANAGER

SCOTT 3000 ANALYST

FORD 3000 ANALYST

KING 5000 PRESIDENT

6 rows selected.

3. Display the jobs having avg sal< avg sal of ANALYST

 Sol: select job,avg(sal) from emp group by job having avg(sal) < (select avg(sal) from

 emp where job='ANALYST');

Output:

JOB AVG(SAL)

--------- ---------

CLERK 1037.5

MANAGER 2758.33333

SALESMAN 1400

4. Find out employees who earn a salary <the avg sal of their jobs.

Sol: select ename,job,sal from emp e where sal<(select avg(sal) from emp where job=e.job) order by job;
Output:

ENAME JOB SAL

---------- --------- ----------

SMITH CLERK 800

JAMES CLERK 950

CLARK MANAGER 2450

WARD SALESMAN 1250

MARTIN SALESMAN 1250

5. Find out employees who are managers.

Sol: select ename,job,deptno from emp e1 where exists (select empno from emp e2 where e1.empno=e2.mgr);
Output:

ENAME JOB DEPTNO

---------- --------- ----------

JONES MANAGER 20

BLAKE MANAGER 30

CLARK MANAGER 10

SCOTT ANALYST 20

KING PRESIDENT 10

FORD ANALYST 20

6 rows selected.

6. Find out the employees who earn the lowest salary in each department.

Sol: select ename,sal,deptno from emp where (sal,deptno) in (select min(sal),deptno from emp group by deptno) order by sal;
Output:

ENAME SAL DEPTNO

---------- ---------- ----------

SMITH 800 20

JAMES 950 30

MILLER 1300 10

7. Find out employees who are first to join their departments.

Sol: select deptno,ename,hiredate from emp where (hiredate,deptno) in(select min(hiredate),deptno from emp group by deptno) order by hiredate;
Output:

 DEPTNO ENAME HIREDATE

 ---------- ---------- -------------

 20 SMITH 17-DEC-80

 30 ALLEN 20-FEB-81

 10 CLARK 09-JUN-81

8. Write a query to find the employees who are earning the max sal in their departments.

Sol: select ename,job,sal,deptno from emp e where sal=(select max(sal) from emp where deptno=e.deptno) order by deptno;
Output:

ENAME JOB SAL DEPTNO

---------- --------- ---------- ----------

KING PRESIDENT 5000 10

SCOTT ANALYST 3000 20

FORD ANALYST 3000 20

BLAKE MANAGER 2850 30

9. Write a query to display the two lowest earner’s name & salaries.

 Sol: select ename,sal from emp e where 2>(select count(*)from emp where sal<e.sal)

 order by sal;
Output:

ENAME SAL

---------- ----------

SMITH 800

JAMES 950

10. Find out the employee who earns the 2nd maximum salary.

 Sol: select max(sal) from (select * from emp where sal not in (select max(sal) from emp));

Output:

 MAX(SAL)

 3000

Assignment 9

Assignment 10

SQL does not have any procedural capabilities. SQL does not provide the programming techniques of condition checking, looping and branching. These disadvantages prevent SQL for being a fully structured programming language. For a fully structured programming language Oracle provides PL/SQL.PL/SQL is super set of SQL. It is a block-structured language that enables one to combine the power of SQL with procedural statements. Using PL/SQL one can do the following:

· Declare variables

· Perform conditional execution of statements

· Use looping construct to do things repeatedly

· Mange database transactions

· Handle exceptions

· Do row-by-row processing using cursors

· Define database triggers

 Assignment on (Introduction to PL/SQL)

 For the exercises below, you require a temp table to store the results. Create a table

 Temp with the following three columns.
a) NUM_STORE with NUMBER(7,2)

b) CHAR_STORE with VARCHA2(35)

c) DATE_STORE with DATE

EX1: Write a PL/SQL block to declare two variables MESSAGE of VARCHAR2 datatype with width as 35 characters & DATA_WRITEN of DATE datatype. Assign the following values to the variable in executable part.

Variable Contents

MESSAGE

This is a PL/SQL Program

DATE_WRITTEN

Today’s date

Store the values in appropriate cols of TEMP table. Query the TEMP table to check the correctness.

 Sol:

 declare

 message varchar2(35);

 date_written date;

 begin

 message:='This is a PL/SQL programme';

 date_written:=SYSDATE;

 insert into temp(char_store,date_store)

 values(message,date_written);

 end;

Output:

 NUM_STORE CHAR_STORE DATE_STOR

------------------- ----------------------------------- -----------------

 This is a PL/SQL programme 04-APR-06

EX2: Write a PL/SQL block to accept values for NUM1 & NUM2 at run time. Store the remainder of NUM1 divided by NUM2 in a SQL * Plus host variable called RESULT. Check the concepts of RESULT variable for correctness.

 Sol: step1: declare a host variable result as:

 SQL> variable result number;

 step2:

 declare

 num1 number(5);

 num2 number(5);

 begin

 :result:=mod(&num1,&num2);

 end;

 step3:

 Use the print command as below to see the contents of result:

 SQL> print result;

Output:

 SQL> variable result number;

 SQL> declare

 2 num1 number(5);

 3 num2 number(5);

 4 begin

 5 :result:=mod(&num1,&num2);

 6 end;

 7 /

 Enter value for num1: 25

 Enter value for num2: 4

 old 5: :result:=mod(&num1,&num2);

 new 5: :result:=mod(25,4);

 PL/SQL procedure successfully completed.

 SQL> print result;

 RESULT

 1

EX3: Write a PL/SQL code to find out the sum of two given numbers(fixed value).

Sol:

SQL> set serverout on;

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 c integer(5);

 5 begin

 6 a:=10;

 7 b:=20;

 8 c:=a+b;

 9 dbms_output.put_line('result='||c);

 10 end;

 11 /

Output:

result=30

PL/SQL procedure successfully completed.

EX4: Write a PL/SQL code to find out the sum of two given numbers(numbers are user defined)

Sol:

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 c integer(5);

 5 begin

 6 a:=&a;

 7 b:=&b;

 8 c:=a+b;

 9 dbms_output.put_line('a='||a||'b='||b||'c='||c);

 10 end;

 11 /

Output:

Enter value for a: 15

old 6: a:=&a;

new 6: a:=15;

Enter value for b: 40

old 7: b:=&b;

new 7: b:=40;

a=15b=40c=55

PL/SQL procedure successfully completed.

EX5: Write a PL/SQL code to find out the biggest among two numbers(numbers are user defined).

Sol:

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 begin

 5 a:=&a;

 6 b:=&b;

 7 if a>b then

 8 dbms_output.put_line('The biggest number is '||a);

 9 else

 10 dbms_output.put_line('The biggest number is '||b);

 11 end if;

 12 end;

 13 /

Output:

Enter value for a: 40

old 5: a:=&a;

new 5: a:=40;

Enter value for b: 60

old 6: b:=&b;

new 6: b:=60;

The biggest number is 60

PL/SQL procedure successfully completed.

EX6: Write a PL/SQL code to find out the factorial of a given number.

Sol:

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 begin

 5 a:=&a;

 6 b:=1;

 7 while a<>1

 8 loop

 9 b:=b*a;

 10 a:=a-1;

 11 end loop;
 12 dbms_output.put_line('Value is '||b);

 13 end;

 14 /

Output:

Enter value for a: 5

old 5: a:=&a;

new 5: a:=5;

Value is 120

PL/SQL procedure successfully completed.

EX7: Write a PL/SQL code to find out the biggest among three numbers.

Sol:

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 c integer(5);

 5 begin

 6 a:=&a;

 7 b:=&b;

 8 c:=&c;

 9 if a>b and a>c then

 10 dbms_output.put_line('a='||a);

 11 else if b>a and b>c then

 12 dbms_output.put_line('b='||b);

 13 else

 14 dbms_output.put_line('c='||c);

 15 end if;

 16 end if;

 17 end;

 18 /

Output:

Enter value for a: 20

old 6: a:=&a;

new 6: a:=20;

Enter value for b: 77

old 7: b:=&b;

new 7: b:=77;

Enter value for c: 30

old 8: c:=&c;

new 8: c:=30;

b=77

PL/SQL procedure successfully completed.

EX8: Write a PL/SQL block to find out FIBONACCI SERIES.

Sol:

SQL> set serveroutput on;

SQL> declare

 2 n integer(10);

 3 a integer(5):=0;

 4 b integer(5):=1;

 5 c integer(5);

 6 i integer(5);

 7 begin

 8 n:=&n;

 9 dbms_output.put_line('The Fibonacci Series is: ');

 10 dbms_output.put_line(''||a);

 11 for i in 1..n

 12 loop

 13 c:=a;

 14 a:=a+b;

 15 b:=c;

 16 dbms_output.put_line(''||a);

 17 end loop;

 18 end;

 19 /

Output:

Enter value for n: 10

old 8: n:=&n;

new 8: n:=10;

The Fibonacci Series is:

0

1

1

2

3

5

8

13

21

34

55

PL/SQL procedure successfully completed.

EX9: Write a PL/SQL block to find out the reverse of a given number.

Sol:

SQL> declare

 2 n integer(9);

 3 rev integer(5):=0;

 4 r integer(5);

 5 begin

 6 n:=&n;

 7 dbms_output.put_line('Reverse of the given number is:');

 8 while n>0

 9 loop

 10 r:=n;

 11 n:=floor(n/10);

 12 r:=r-(10*n);

 13 rev:=(rev*10)+r;

 14 end loop;

 15 dbms_output.put_line(''||rev);

 16 end;

 17 /

Output:

Enter value for n: 123

old 6: n:=&n;

new 6: n:=123;

Reverse of the given number is:

321

PL/SQL procedure successfully completed.

EX2: Write a PL/SQL block for swapping two numbers.

Sol:

SQL> declare

 2 a integer(5);

 3 b integer(5);

 4 begin

 5 a:=&a;

 6 b:=&b;

 7 a:=a+b;

 8 b:=a-b;

 9 a:=a-b;

 10 dbms_output.put_line(' After swapping a is='||a||' and '||'b is='||b);

 11 end;

 12 /

Output:

Enter value for a: 23

old 5: a:=&a;

new 5: a:=23;

Enter value for b: 44

old 6: b:=&b;

new 6: b:=44;

After swapping a is=44 and b is=23

PL/SQL procedure successfully completed.

Assignment 10
Assignment on (PL/SQL Transaction)

 EX1: Write a PL/SQL block of code that first withdraws an amt of Rs.1000. Then deposit an amt of Rs.140000.Update the current balance. Then check to see that the current balance of all the accounts in the bank does not exceed Rs.2,00,000. If the balance exceeds Rs.2,00,000 then undo the deposit just made.

 Sol:

 declare

 tbalance acct_mstr.balance%type;

 trans_num trans_mstr.trans_no%type;

 acct_num trans_mstr.acct_no%type;

 dat trans_mstr.dt%type;

 dance trans_mstr.drcr%type;

 amount trans_mstr.amt%type;

 begin

 insert into trans_mstr(trans_no,acct_no,dt,drcr,amt)

 values('&trans_num','&acct_num','&dat','&drncr',&amount);

 update acct_mstr

 set balance=balance-amount

 where acct_no=acct_num;

 savepoint withdrawal;

 insert into trans_mstr(trans_no,acct_no,dt,drcr,amt)

 values('&trans_num','&acct_num','&dat','&drncr',&amount);

 update acct_mstr

 set balance=balance+amount

 where acct_no=acct_num;

 select sum(balance) into tbalance

 from acct_mstr;

 if tbalance>20000000 then

 rollback to savepoint withdrawal;

 end if;

 commit;

 end;

Output:

Enter value for trans_num: 2

Enter value for acct_num: 1

Enter value for dat: 1-apr-06

Enter value for drncr: c

Enter value for amount: 1000

old 13: values('&trans_num','&acct_num','&dat','&drncr',&amount);

new 13: values('2','1','1-apr-06','c',1000);

Enter value for trans_num: 3

Enter value for acct_num: 1

Enter value for dat: 1-apr-2006

Enter value for drncr: d

Enter value for amount: 2000

old 22: values('&trans_num','&acct_num','&dat','&drncr',&amount);

new 22: values('3','1','1-apr-2006','d',2000);

PL/SQL procedure successfully completed.

SQL> select * from trans_mstr;

 TRANS_NO ACCT_NO DT DRCR AMT

 --------------- -------------- --------- ---------- ----------

 1 1 01-APR-06 d 10000

 2 1 01-APR-06 c 1000

 3 1 01-APR-06 d 2000

Assignment 11

CURSER PROGRAMMING

TO CREATE THE TABLE RELATED TO THIS ASSIGNMENT

SQL> create table emp1

 2 (e_no varchar2(5),

 3 e_name varchar2(10),

 4 salary number(10));

Table created.

INSERT THE VALUES IN THE TABLE EMP1 AS FOLLOWS

E_NO E_NAME SALARY

----- ---------- ----------

z001 Timothy 1000

z002 John 2500

z003 Joseph 3500

z004 Nicola 5000

z005 Anthony 7000

1.Set the salary of those employee who get salary more than 2500 by salary=salary*25.

Sol:

SQL> set serveroutput on;

SQL> begin

 2 update emp1 set salary=salary*25

 3 where e_no='&e_no';

 4 if sql%found then

 5 dbms_output.put_line('The records of the table emp1 modified successfully');

 6 else

 7 dbms_output.put_line('No such employee exist');

 8 end if;

 9 end;

 10 /

Output:

Enter value for e_no: z001

old 3: where e_no='&e_no';

new 3: where e_no='z001';

The records of the table emp1 modified successfully

PL/SQL procedure successfully completed.

TO SEE THE UPDATED TABLE EMP1

SQL> select * from emp1;

E_NO E_NAME SALARY

----- ---------- ----------

z001 Timothy 25000

z002 John 2500

z003 Joseph 3500

z004 Nicola 5000

z005 Anthony 7000

2.Set salary of the employee(who get salary more than 2500) by 10% increased.

Sol:

SQL> declare

 2 a integer(9);

 3 begin

 4 update emp1 set salary=salary*0.1+salary

 5 where e_no='&e_no' and salary>2500;

 6 a:=to_char(sql%rowcount);

 7 dbms_output.put_line('number of rows modified'||a);

 8 end;

 9 /

Output:

Enter value for e_no: z001

old 5: where e_no='&e_no' and salary>2500;

new 5: where e_no='z001' and salary>2500;

number of rows modified1

PL/SQL procedure successfully completed.

SQL> /

Enter value for e_no: z002

old 5: where e_no='&e_no' and salary>2500;

new 5: where e_no='z002' and salary>2500;

number of rows modified0

PL/SQL procedure successfully completed.

SQL> /

Enter value for e_no: z003

old 5: where e_no='&e_no' and salary>2500;

new 5: where e_no='z003' and salary>2500;

number of rows modified1

PL/SQL procedure successfully completed.

TO SEE THE UPDATED TABLE EMP1

SQL> select * from emp1;

E_NO E_NAME SALARY

----- ---------- ----------

z001 Timothy 27500

z002 John 2500

z003 Joseph 3850

z004 Nicola 5000

z005 Anthony 7000

3. Create a table and write a PL/SQL code that will store the consecutive values of radius and corresponding area of a circle.

 Sol:

To create the table related to the above question

SQL> create table circle(

 2 radius number(10),

 3 area number(10,2));

Table created.

PL/SQL command for storing the consecutive values of radius and corresponding area of a circle.

SQL> declare

 2 r number(10);

 3 a number(10,2);

 4 n integer(10);

 5 begin

 6 n:=&n;

 7 r:=1;

 8 while r<=n

 9 loop

 10 a:=3.14*r*r;

 11 insert into circle(radius,area)

 12 values(r,a);

 13 r:=r+1;

 14 end loop;

 15 end;

 16 /

Output:

Enter value for n: 10

old 6: n:=&n;

new 6: n:=10;

PL/SQL procedure successfully completed.

SQL> select * from circle;

 RADIUS AREA

 ---------- ----------

 1 3.14

 2 12.56

 3 28.26

 4 50.24

 5 78.5

 6 113.04

 7 153.86

 8 200.96

 9 254.34

 10 314

10 rows selected.

4. Update the area of a circle by area*0.1of a particular radius using %found

Sol:

SQL> set serveroutput on;

SQL> begin

 2 update circle set area=area*0.1

 3 where radius='&radius';

 4 if sql%found then

 5 dbms_output.put_line('Circle record modified successfully');

 6 else

 7 dbms_output.put_line('No such circle exist');

 8 end if;

 9 end;

 10 /

Output:

Enter value for radius: 5

old 3: where radius='&radius';

new 3: where radius='5';

Circle record modified successfully

PL/SQL procedure successfully completed.

SQL> select * from circle;

 RADIUS AREA

 ---------- ----------

 1 3.14

 2 12.56

 3 28.26

 4 50.24

 5 7.85

 6 113.04

 7 153.86

 8 200.96

 9 254.34

 10 314

10 rows selected.
5. Update the area of a circle by area*0.1of a particular radius using %rowcount
Sol:

SQL> declare

 2 a char(5);

 3 begin

 4 update circle set area=area*0.1

 5 where radius='&radius';

 6 a:=to_char(sql%rowcount);

 7 dbms_output.put_line(a||'no of rows affected');

 8 end;

 9 /

Output:

Enter value for radius: 10

old 5: where radius='&radius';

new 5: where radius='10';

1 no of rows affected

PL/SQL procedure successfully completed.

SQL> select * from circle;

 RADIUS AREA

 ---------- ----------

 1 3.14

 2 12.56

 3 28.26

 4 50.24

 5 7.85

 6 113.04

 7 153.86

 8 200.96

 9 254.34

 10 3.14

10 rows selected.

1 A cursor is a PL/SQL construct that lets you individually manipulate each row in a set of rows returned by a query.(Without using a cursor, only a single kind of modification can be made to the entire set of rows returned by a query)

2 Types of cursors:

· Implicit cursordeclared implicitly for each SQL DML statement

· Explicit cursor


Steps of using a cursor:-

 1.Declaring a cursor

 2.Opening a cursor

 3.Fetching rows from an open cursor

 4.Closing a cursor

1 Example:

DECLARE

 CURSOR TR_CUR IS

 SELECT TR_, TR_TYPE, TR_AMOUNT

 FROM TRHIST

 WHERE AC_NO=111111

 AND TR_DATE BETWEEN ’01-JAN-96’ AND ’31-JAN-96’;

BEGIN

END;

2 Parameterized cursor:-

 Declare

 Cursor Tr_cur(PARA_AC number) is

 Select Tr_Date,Tr_Type,Tr_Amount

 From Trhist

 Where AC_NO= PARA_AC

 and Tr_Date, between ’01-JAN-96’ and ’31-JAN-96’;

 BEGIN

END;

3 Opening a cursor:-

Open Tr_cur;

 With arguments:-

 Open Tr_cur(111111);

4 Fetching from an open cursor:-

 Declare

 Cursor Tr_cur is

 Select Tr_Date,Tr_Type,Tr_Amount

 From Trhist

 ………………

 V_Date Tr_Date%Type;

 V_Date Tr_ Type %Type;

 V_Amount Tr_ Amount %Type;

 Begin

 Open Tr_cur;

 Loop

 Fetch Tr_cur into V_Date, V_Date, V_Amount

 Exit when <condition>;

 End Loop;

 End;

5 Closing a cursor

close Tr_cur;

6 Cursor attributes:-

 %NOTFOUND=TRUE=>if the last fetch statement did not retrieve a row

 =FALSE=>else

 if Tr_cur%NOTFOUND then exit;

 %FOUND

 %ROWCOUNT:no. of rows fetched by a cursor up to the last fetch command.

 %ISOPEN:

EX1:A table sales contains the following details

 RepIdemployee code of a salesperson

 CustIdcustomer number

 CustNamename of a customer

 ProdIdproduct number

 ProdName product name

 Amountsales amount

You have to write a PL/SQL program that accepts product number from user, select all the rows for the product number, accumulate sales amount for all the selected rows & writes the product name and its total sales into a TotalSales table having following structure:-

TotalSales Table:

ProdNamevarchar2(30)

TotalAmountNumber

Sol:

 SQL> declare

 2 prod_name sales.prodname%Type;

 3 s_amt sales.amount%Type;

 4 cursor t_sales (prod_no number) is

 5 select prodname,amount from sales

 6 where prodid=prod_no;

 7 t_amt number(10);

 8 begin

 9 t_amt:=0;

 10 open t_sales (&p_no);

 11 fetch t_sales into prod_name,s_amt;

 12 while t_sales%found

 13 loop

 14 t_amt:=t_amt+s_amt;

 15 fetch t_sales into prod_name,s_amt;

 16 end loop;

 17 insert into totalsales

 18 values(prod_name,t_amt);

 19 close t_sales;

 20 end;

 21 /

Enter value for p_no: 100

old 10: open t_sales(&p_no);

new 10: open t_sales(100);

PL/SQL procedure successfully completed.

SQL> select * from totalsales;

PRODNAME TOTALAMOUNT

------------------------------ -----------

 0

Syntax of Cursor Programming:

SQL>declare<cursor name> is select emp_no,emp_name,salary from <table name> order by salary desc;

<new variable><table name> emp_no%type;

……………………..

……………………..

Begin

Open <cursor name>;

Dbms_output.put_line(‘emp_no emp_name salary’);

If<cursor name>%isopen then

Loop

Fetch<cursor name>into <new variable1>,

<new variable2>………..<new variable n>;

exit when <cursor name>%notfound;

Dbms_output.put_line(<new variable>||’’,|| <new variable>||’’||……..);

End loop;

Commit;

Close<cursor name>;

Else

Dbms_output.put_line(‘UNABLE TO OPEN CURSOR’);

End if;

End;

/

Cursor Programming:

To create a table related to this assignment:

SQL> create table emp2

 2 (emp_no varchar2(5),

 3 emp_name varchar2(10),

 4 salary number(10));

Table created.

To see the emp2 table.

SQL> select * from emp2;

EMP_N EMP_NAME SALARY

----- ---------- ----------

e1 A 20000

e2 B 15000

e3 C 12000

e4 D 18000

e5 E 16000

1.Write a PL/SQL that determines the details of employee from emp2,use appropriate cursor attribute for the same.Display emp_no, emp_name, salary.

SQL> declare

 2 cursor c1 is select emp_no,emp_name,salary

 3 from emp2 order by salary desc;

 4 emp11 emp2.emp_no%type;

 5 emp12 emp2.emp_name%type;

 6 emp13 emp2.salary%type;

 7 begin

 8 open c1;

 9 dbms_output.put_line('emp_no emp_name salary');

 10 dbms_output.put_line('-----------------');

 11 if c1%isopen then

 12 loop

 13 fetch c1 into emp11,emp12,emp13;

 14 exit when c1%notfound;

 15 dbms_output.put_line('&emp11||''||&emp12||''||&emp13');

 16 end loop;

 17 commit;

 18 close c1;

 19 else

 20 dbms_output.put_line('Unable to open cursor');

 21 end if;

 22 end;

 23 /

Enter value for emp11: e1

Enter value for emp12: e2

Enter value for emp13: e3

old 15: dbms_output.put_line('&emp11||''||&emp12||''||&emp13');

new 15: dbms_output.put_line('e1||''||e2||''||e3');

PL/SQL procedure successfully completed.

SQL> select * from emp2;

EMP_N EMP_NAME SALARY

----- ---------- ----------

e1 A 20000

e2 B 15000

e3 C 12000

e4 D 18000

e5 E 16000

Assignment 12

1 A database trigger is a special type of PL/SQL program that is associated with a database table. It can be specified to execute automatically whenever an operation such as delete, insert or update is performed on the table.

2 One cannot define a trigger on view.

3 Uses:

· Triggers are used for enforcing business rules that can not be enforced using declarative integrity constraints.

 It cannot be used for

1 Logging events

2 Implementing complex business rules

3 Maintaining replicate tables across databases

4 Auditing

5 Deriving column values automatically

Types of triggers:-

· Statement trigger: It is a trigger in which the trigger action (PL/SQL

 Program) is performed once for the operation that fires the trigger.

· Row trigger: In this type of trigger the action is performed repeatedly for each row of the table that is affected by the operation that fires the

 trigger.

Triggering time:-

· Before triggering:- trigger action is performed before the operation that fires the trigger is executed.

· After triggering:- trigger action is performed after the operation that fires the trigger is executed.

Triggering events:

· Delete trigger

· Insert trigger

· Update trigger

1 Creating trigger:

Here is an example of creating an after insert statement trigger. The trigger deletes the records from the table TRFILE after an insert operation on the

 TRHIST table.

 Create trigger after_ins_trig

 after insert on trhist

 begin

 delete from trifle;

 end;

2 Correlation Names:

 :OLD col_name-------old val of the col

 :NEW col_name-------new val of the col

(delete  new val is null

 insertold val is null)

e.g. if :new.AC_balance>: old. AC_balance

Ex1: Create a trigger that audits an EMP table. A trigger insert a row in OPERATIONS table with appropriate values whenever there is an insert, update or delete activity on EMP table.

e.g., if a user deletes rows from EMP table, the trigger should insert a row in OPERATIONS table with following details:

 Col_name values to be inserted

 Operation Delete

 Ontable EMP

 Operdate SYSDATE

 Username USER

 Sol:

 SQL> create trigger audit_emp

 2 after insert or update or delete

 3 on emp

 4 begin

 5 if inserting then

 6 insert into operations

 7 values('insert','emp',sysdate,user);

 8 end if;

 9 if updating then

 10 insert into operations

 11 values('update','emp',sysdate,user);

 12 end if;

 13 if deleting then

 14 insert into operations

 15 values('delete','emp',sysdate,user);

 16 end if;

 17 end;

 18 /

Trigger created.

Assignment 13

PL/SQL lets you create two types of named modules:

· Subprogram

· Package

A subprogram is a named PL/SQL program which can take parameters, return values to calling environment & can be called in another subprogram or unnamed PL/SQL block.

Package is a collection of related PL/SQL program objects, such as subprogram, variables, constants etc. Packaged objects can be referenced by others programs.

There are two types of subprograms

· Stored procedure

· Functions

The only difference is that a function explicitly returns a value to its calling environment, whereas a stored procedure does not.

Ex1: Create a stored procedure, which transfers ACT_NUM & ACT_BAL from TRHIST to HISTORY table:

 SQL> create procedure tran

 2 is

 3 cursor tran_cur is(select act_num,act_bal from trhist);

 4 begin

 5 for rec in tran_cur

 6 loop

 7 insert into history values(rec.act_num,(rec.act_bal);

 8 end loop;

 9 end;

 10 /

Ex2: Create a function, which transfers ACT_NUM & ACT_BAL from TRHIST to

 HISTORY table & returns the noumber of rows transferred:-

2 Passing parameters:

 Write a procedure acproc that updates the account balance in the account master

 When an amount is withdrawn for an account number:

 SQL> create procedure acproc(acc_no in number,tr_amount in number) as

 2 begin

 3 update acmas

 4 set ac_balance=ac_balance-tr_amount

 5 where ac_no=acc_no;

 6 end;

 7 /

3 Executing:

Sol:

SQL> execute acproc(3244,20000);

Output:

4 Calling subprograms:

o
Calc_int(x,y);

o
Var1:= Calc_int(x,y);

o
If Calc_int(x,y) then……….

o
………………………….


A package comprises the package specification & the package body.You need to create a package. Create the specification before the body.

e.g. Create the package specification declaring the package acc_transfer containing function acc_transfer and procedures withdraw_proc & deposit_proc:

Create package acc_transfer as

 function acc_transfer(acno number,tr_amount number)

 return boolean;

 procedure withdraw_proc(ano in number, tr_amt in number);

 procedure deposit_proc(ano in number, tr_amt in number);

end;

Create package body acc_transfer as

 function check_amt(…………..) return boolean as

amt boolean;

 acc_bal number(13,2);

 begin

 select ac_balance into acc_bal from acmas where ac_no=acno;

 if acc_bal>=tr_amt then

 amt:=true;

 ……………

 …………....

1 Referencing the contents of a package

SQL>execute acc_transfer. deposit_proc(ano, tr_amt);

Index:

When SELECT statement is fired to search a particular record, the Oracle engine must first locate the table on the hard disk. The Oracle engine reads the system information and finds the start location of the table’s record on the current storage media. The Oracle engine then performs a sequential search to locate records that match user-defined criteria as specified in the SELECT.

Indexing a table is an access strategy, that is, a way to sort and search records in the table. Indexes are essential to improve the speed with which record(s) can be located and retrieved from a table.

Indexing involves forming a two dimensional matrix completely independent of the table on which index is being created. This two dimensional matrix will have a single column, which will sorted data, extracted from the table column(s) on which index is created. Another column called the address field identifies the location of the record in the Oracle database.

Creating of an Index:

An index can be created on one or more columns. Based on the number of columns included in the index, an index can be:

· Simple Index

· Composite Index

Creating simple index:

Syntax:

CREATE INDEX <Index Name> ON <Table Name>(<Column Name>)

Creating composite index:

Syntax:

CREATE INDEX <Index Name> ON <Table Name>(<Column Name1>,<Column Name2>)

Creating unique index:

Indexes that deny duplicate values for the index columns is called unique index. It can be created one or more columns. If it is created on a single column, it is called Simple unique index. If it is created on more than one column, it is called Composite unique index.

Syntax for simple unique index:

CREATE UNIQUE INDEX <Index Name> ON <Table Name>(<Column Name>)

Syntax for composite unique index:

CREATE UNIQUE INDEX <Index Name> ON <Table Name>(<Column Name1>,<Column Name2>)

ROWID and ROWNUM

The address field of an index is called ROWID. It is an internally generated and maintained value, which uniquely identifies a record. The information in the ROWID column provides the Oracle engine the location of the table and a specific record in the Oracle database. Each key in the index is associated with a ROWID that points to the associated row’s address for first access.

The ROWID format used by Oracle for Extended format is as follows:

OOOOOOFFFBBBBBBRRR

Where,

OOOOOO is the data object number that identifies the database segment.

FFF is the TABLESPACE-relative datafile number of the datafile that contains the row.

BBBBBB is the data block that contains the row.

RRR is the row in the block.

Ex1: Show department name with the ROWID of each record in the dept table.

Syntax: select ROWID, dname from dept;

Ex2: Create a table Emp123 with the following fields:

Emp_No--------------------------varchar2(10)

Fname---------------------------- varchar2(20)

Dept………………………… varchar2(20)

Then insert values with duplicate records. Then delete each duplicate rows from the table.

Syntax:

DELETE FROM Emp123 where ROWID not in(select min(ROWID) from emp123 group by Emp_no,Fname,Dept);

For each row returned by a query, the ROWNUM pseudo column returns a numbers indicating the order in which Oracle engine selects the row from the table or set of joined rows. The first rows selected has a ROWNUM of 1 and second has 2 and so on.

Ex1: Retrieve the first three records from emp table.

Syntax: select * from emp where ROWNUM<=3;

GRANT and REVOKE

Oracle provides extensive security features in order to safeguard information stored in its table from unauthorized viewing or damaged. Depending on the user’s status and responsibility, appropriate rights on Oracle’s resources can be assigned to the user by the DBA. The rights that allow the user to use some or all Oracle’s resources on the server are called Privileges.

Objects that are created by a user are owned and controlled by that user. If a user wishes to access any of the objects belonging to another user, the owner of the objects will have to give permissions for such access. This is called Granting of Privileges.

The owner of the object can take privileges once given back. This is called Revoking of Privileges.

Grant some privileges:

Syntax:

GRANT < Object Privileges>

 ON< Object Name>

 TO <User Name>

 [WITH GRANT OPTION];

The some of the object privileges are listed below:

· ALTER: To allow the grantee to change the table definition with the ALTER TABLE command.

· DELETE: To allow the grantee to remove the records from the table with the DELETE command.
· INDEX: To allow the grantee to create an index on the table with the CREATE INDEX command.

· INSERT: To allow the grantee to add records to the table with the insert command.

· SELECT: To allow the grantee to query the table with select command.

· UPDATE: To allow the grantee to modify the records in the tables with the update command.

WITH GRANT OPTION: The WITH GRANT OPTION allows the grantee to in turn grant object privileges to other users.

Ex: Give a user all data manipulation permission on EMP_DUP table.
Syntax: GRANT ALL ON EMP_DUP TO username;

EX: Give a user permission to only view and modify records on EMP_DUP table

Syntax: GRANT SELECT< UPDATE ON EMP_DUP TO username;

Revoking Privileges Given

Using the REVOKE command any privileges that was given to the user can be denied at any time. The object owner is the one person who can revoke privileges to a user. Any user who has the GRANT privileges has the power to REVOKE the privileges from a grantee.

Syntax:

 REVOKE<Object Privileges>
 ON<Object Name>

 FROM<User Name>;
Ex: Take back the DELETE privileges from a user on a particulat table that was granted once.
Syntax: REVOKE DELETE ON tablename FROM username;

Ex: Take back all the privileges from a user on a particulat table that was granted once.

Syntax: REVOKE ALL ON tablename FROM username;

Create user in oracle

Use the CREATE USER statement to create and configure a database user, which is an account through which you can log in to the database, and to establish the means by which Oracle Database permits access by the user.

You must have the CREATE USER system privilege.

Syntax: create user username identified [by password] or [externally] or [globally as ‘external_name’];

EXTERNALLY Clause
Specify EXTERNALLY to create an external user. Such a user must be authenticated by an external service, such as an operating system or a third-party service. In this case, Oracle Database relies on the login authentication of the operating system to ensure that a specific operating system user has access to a specific database user

Examples
All of the following examples use the example tablespace, which exists in the seed database and is accessible to the sample schemas.

Creating a Database User: Example
If you create a new user with PASSWORD EXPIRE, then the user's password must be changed before the user attempts to log in to the database. You can create the user sidney by issuing the following statement:

CREATE USER sidney

 IDENTIFIED BY out_standing1

 DEFAULT TABLESPACE example

 QUOTA 10M ON example

 TEMPORARY TABLESPACE temp

 QUOTA 5M ON system

 PROFILE app_user

 PASSWORD EXPIRE;

The user sidney has the following characteristics:

· The password out_standing1
· Default tablespace example, with a quota of 10 megabytes

· Temporary tablespace temp
· Access to the tablespace SYSTEM, with a quota of 5 megabytes

· Limits on database resources defined by the profile app_user (which was created in "Creating a Profile: Example")

· An expired password, which must be changed before sidney can log in to the database

Creating External Database Users: Examples
The following example creates an external user, who must be identified by an external source before accessing the database:

CREATE USER app_user1

 IDENTIFIED EXTERNALLY

 DEFAULT TABLESPACE example

 QUOTA 5M ON example

 PROFILE app_user;

The user app_user1 has the following additional characteristics:

· Default tablespace example
· Default temporary tablespace example
· 5M of space on the tablespace example and unlimited quota on the temporary tablespace of the database

· Limits on database resources defined by the app_user profile

To create another user accessible only by an operating system account, prefix the user name with the value of the initialization parameter OS_AUTHENT_PREFIX. For example, if this value is "ops$", you can create the externally identified user external_user with the following statement:

CREATE USER ops$external_user

 IDENTIFIED EXTERNALLY

 DEFAULT TABLESPACE example

 QUOTA 5M ON example

 PROFILE app_user;

Creating a Global Database User: Example
The following example creates a global user. When you create a global user, you can specify the X.509 name that identifies this user at the enterprise directory server:

CREATE USER global_user

 IDENTIFIED GLOBALLY AS 'CN=analyst, OU=division1, O=oracle, C=US'

 DEFAULT TABLESPACE example

 QUOTA 5M ON example;

CREATE TABLE supplier
 2 (supplier_id numeric(10) not null,
 3 supplier_name varchar2(50) not null,
 4 contact_name varchar2(50),
 5 CONSTRAINT supplier_pk PRIMARY KEY (supplier_id)
 6);

Table created.

SQL>
SQL>
SQL> CREATE TABLE products
 2 (product_id numeric(10) not null,
 3 supplier_id numeric(10) not null,
 4 CONSTRAINT fk_supplier
 5 FOREIGN KEY (supplier_id)
 6 REFERENCES supplier(supplier_id)
 7);

